首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
安全科学   1篇
废物处理   2篇
环保管理   1篇
基础理论   2篇
污染及防治   1篇
评价与监测   4篇
社会与环境   1篇
  2022年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
Acid pre-treated powdered waste sludge (PWS) was used for removal of textile dyestuffs from aqueous medium by adsorption as an alternative to the use of powdered activated carbon (PAC). The rate and extent of dysetuff removals were determined for four different dyestuffs at different PWS concentrations varying between 1 and 6 gl(-1). Biosorbed dyestuff concentrations at equilibrium decreased with increasing PWS concentration for all dyestuffs tested. PWS was more effective for adsorption of Remazol red RR and Chrisofonia direct yellow 12 as compared to the other dyestuffs tested. More than 80% percent dyestuff removal was obtained for all dyestuffs at PWS concentrations above 4 gl(-1) after 6h of incubation. Similar to percent dyestuff removal, the rate of adsorption was maximum at a PWS concentration of 4 gl(-1). Kinetics of adsorption of dyestuffs was investigated by using the first- and second-order kinetic models and the kinetic constants were determined. Second-order kinetics was found to fit the experimental data better than the first-order model for all dyestuffs tested. Adsorption isotherms were established for all dyestuffs used and the isotherm constants were determined by using the experimental data. Langmuir and the generalized adsorption isotherms were found to be more suitable than the Freundlich isotherm for correlation of equilibrium adsorption data. Acid pre-treated PWS was proven to be an effective adsorbent for dyestuff removal as compared to the other adsorbents reported in literature studies.  相似文献   
12.
Journal of Material Cycles and Waste Management - Discarded dry fig and raisin, which exporting companies have to claim and destroy, were subjected to batch dark fermentation at 37 °C...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号